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(I originally wrote this document in the early 1980s—before word processing—as a
background aid for my Calc IT and ODE classes. I post it here to help any students who
are insecure regarding their calculus background. I’m open to expanding it if there is
enough interest—perhaps include some linear algebra?)

Limit is a mathematical process, an operation. It measures or describes the behavior
of a function f(z) as the independent variable, x, tends towards a given value c.
An intuitive appreciation of this can perhaps be had from the following example.
Let f(n) be given by
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for integral values of n, only. (Note that this is a valid function.) The first few values
are given by:
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and so on. Clearly, the values are tending towards 2 as n gets larger and larger. In fact,
we can make f(n) as close to the value 2 as desired, simply by taking n large enough.
Note, however, that f(n) never actually reaches 2. Nonetheless, we can say that its
limit is 2:
lim f(n)=2.
n—oo

This is the essence of the limit: that the function values tend towards a value L, as the
independent variable tends towards a given value c. It is important to understand that
f(c) itself is unimportant; what truly defines the value of the limit is the behavior of
the function for z close to, but not equal to, c. Of course, many theorems tell us that
we can compute certain limits according to the formula

M) lim f(2) = f(c).

This is because a large number of functions—though by no means all—fall into the
special class of functions known as continuous functions. It is only for functions that
are continuous at a point « = c that formula (1) applies.



For limit problems not governed by (1), for example,
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we must use more subtle methods. (Why does (1) not apply to (2)?) It is virtually
impossible to recite such methods in a manner that reduces problems like (2) to formula
application, simply because there are too many possible cases. Experience, judgement,
and a clear understanding of the concept of limit are the best weapons to use.

Because so much of calculus revolves around functions which are continuous, this
concept becomes important enough for brief study in its own right. The definition is
contained in (1); this can be broken down into three component parts:

1. fis defined for x = ¢;
2. lim, . f(x) exists and equals L;
3. f(x) =L.

It is a consequence of the following statement, known as the Intermediate Value Theo-
rem, which forms the basis of our “working man’s definition of continuity”:

A function is continuous where its graph can be drawn without lifting the pen
from the page.

Since almost every function that we encounter is continuous nearly everywhere,
there is a tendency for students to dismiss the concept as a useless distinction. This is
emphatically not the case.

The most practical reason—from a student’s point of view—for understanding
continuity is contained in equation (1). Since this relationship holds only for continuous
functions, and for every continuous function equation (1) is true, then we see that:

Continuous functions are those functions for which we can compute limits easily.

Limits and continuity are studied at different levels by different people. For math-
ematicians, and those interested in mathematics, these two concepts are immensely
important tools for building the foundations of the science. Both ideas can be extended
to great generality, and their use and understanding lead to insight into many areas of
pure and applied mathematics. For the calculus student, however, the goals are much
different. Passing the next test and fulfilling a graduation requirement take precedence
over theoretical insight.

This does not diminish the need to either study or learn the material, although the
level of expected understanding must be properly set. The student who fails to grasp
any of the basic ideas of limit and continuity will find the rest of calculus increasingly
difficult, for the concepts do appear again and again, in hypotheses and definitions. The
ability to compute limits of contrived functions is not so important for its own sake;
it does, however, lend insight into the subtler facets of the limit concept. Similarly,
computing the domain of a continuous function is not so special for its own sake, but
rather because it tells us when we are dealing with a continuous function.

While the study of limit leads naturally into the study of continuity, it is not the
case that continuity leads directly and naturally into the study of derivative. Other
motivation must be found.



Perhaps the best approach is to study the geometrical problem of finding the straight
line, £(z), which is tangent to a given curve y = f(z) at a given point (¢, f(c)). We
find that the slope of this straight line is the numerical value of the derivative.

An alternate interpretation of derivative, which follows from the geometric one
discussed above, is rate of change:

The derivative of a function y = f(x) gives the instantaneous rate of change of the
dependent variable y, with respect to the independent variable .

Thus, a large derivative (high rate of change) means a steep graph; a small derivative
(low rate of change) means a shallow graph. The definition of derivative—as distinct
from its various interpretations—is given by a limit:
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Note that the derivative of a function is, itself, another function. Note also that
derivatives may not always exist: if the limit in (3) fails to exist for some x, then no
derivative exists at that point (it may exist elsewhere). Functions for which a derivative
exists at a point c are said to be differentiable at that point.

Because of its various interpretations, especially as a rate of change, the derivative is
the most important and applicable concept in elementary calculus. There is virtually no
limit to what can be done with it. Any problem which involves rates of change or motion
implicitly concerns derivatives, and often can be most easily solved using calculus.
A large class of scientific and engineering problems can be studied as differential
equations, and, in fact, it can plausibly be said that all of our modern technology is
based on a thorough understanding of this one mathematical idea.

Summary of Theorems on Limits and Continuity

Note: Students often do not have a real understanding of what a theorem is, and what it
can be used for. The word “theorem” is based on the Greek word for ’truth”; a theorem
is therefore a true statement: whenever the hypotheses are true, then the conclusions
are true. Always. The fact that something is true, however, does not make it useful
in all situations. It is true that 2 + 2 = 4, but what does that have to do with broiling
a steak? Knowing what theorems are available, however is of great help in solving
problems, for they can and should be used to reduce a difficult problem to a simple
problem. Learning mathematics is, to a great degree, the same as learning when and
where to apply what theorem.

1. If limg; . f(x) = M and lim,_,. g(x) = L, then:

(@) lim, . (af(z) + bg(z )) = aM + bL, for a and b constants;
(b) limgc[f(2)g(x)] =

(©) limg_.[f(z)/g
(d) limg e (f(2))"

X
)= M/L, if L #0;
= MY if M > 0.
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2. If f(x) and g(x) are both continuous at a point x = ¢, then:
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(¢) f(x)/g(x) is continuous, so long as g(c) # 0.

+ bg(x)) is continuous at ¢, for a and b constants;
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x) is continuous at ¢;

(d) (f(a:))l/" is continuous, so long as f(z) > 0.

. If y = f(u) is continuous and u = g(x) is continuous, then h(z) = f(g(x)) is
also continuous.

. All polynomial functions are continuous everywhere.

. All rational functions are continuous where they are defined (i.e., where the
deno,minator is non-zero).

. Intermediate Value Theorem: Let f(z) be continuous on the interval [a, b], and
let W be a number between f(a) and f(b). Then there exists £ € [a, b] such that
flz) =W.



